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True stress-logarithmic strain curves of two pipeline steels, API-5L X65 and X90, using the 3D-DIC (digital image 

correlation) technique were tested. Three methods to obtain the true stress were studied. Method I is based on the 

displacements of the front and lateral faces of the specimen. Method II, which is based on the longitudinal logarithmic 

strain, was verified by method I. The results of method II revealed to be smoother and more stable. Method III, which is 

based on the transverse logarithmic strain, was shown to be invalid after the onset of necking. Six points located in 

longitudinal and transverse directions of the specimen were studied and the results showed that points’ location had little 

effect on true stress-logarithmic strain curves if the points were on the line of fracture. The material properties of API-5L 

X65 were compared with those of API-5L X90. API-5L X65 has a higher value of ultimate stress and API-5L X90 has a 

higher value of ultimate logarithm strain. Comparisons for the yield stress and nominal elongation were also made. 
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1. Introduction 

 

In current uniaxial tension experiments of pipeline 

steels, generally an extensometer or a strain gauge is used 

to obtain the stress-strain curve [1]. MTS, Instron and 

other material test machines are equipped with an 

extensometer to acquire the strain in the longitudinal 

direction. As we all know, the principle of an 

extensometer acquiring the strain is by dividing the 

stretched length of the extensometer by its original length. 

On this account, the obtained strain is an average value 

of the extensometer section and thus was affected by the 

extensometer length [2]. What’s more, it could not be 

applied after the onset of necking. For the method of 

strain gauge, it is mainly applied in the elastic range 

subject to its range limitation. With the development of 

strain-based design for pipelines [3, 4], it is increasingly 

urgent to acquire the full-range stress- strain curves.  

The exploration on testing the true stress- strain 

curves of pipeline steels has lasted for a long time. 

Before the maturity of the DIC technique, many scholars 

obtained the true stress-logarithmic curve using physical 

methods. Li et al. [5] tested the true stress-logarithmic 

strain curves of API-5L X46, X60, X65 and X80 through 

detecting the axial and radial displacements of circular 

cross-section specimen with a displacement meter. The 

true stress and logarithmic strain were calculated through 

the diameter variation of the specimen within the circular 

cross-section. Later, a method of testing the true 

stress-logarithmic strain curves of specimens with 

rectangular cross-section was proposed [6], which 

tracked the dimensional variations of the mostly necking 

region with a special extensometer. 

Owing to the rapid development of computer 

technology and the improvement of the resolution of the 

digital camera lens, the DIC (Digital Image Correlation) 

technique has been widely used in the field of polymers 

[7, 8], especially in the material property test of 

thermoplastics [9, 10, 11]. In the test with the DIC 

technique, the strain could be directly obtained from DIC 

results, while the stress was acquired only though further 

processing.  

There are three methods included in calculating the 

true stress. The first one is based on the displacements of 

front and lateral surfaces of the rectangular cross-section 

specimen [11, 12]. The second and third methods are 

based on the longitudinal and transverse strain, 

respectively. The first and the third methods were used to 

test the true stress-logarithmic curves of polymers [11] 

and results showed that the stress of the third method was 

far from that of the first method. Leitão et al [13] tested 

the local constitutive properties of aluminum friction stir 

welds using the second method. The second method is 

under the assumption of incompressibility and the third 
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method is under the assumption of isotropy. Lockwood et 

al. [14, 15] analyzed the viability of the incompressibility 

assumption by performing numerical simulations of 

tensile tests using a FE model. But a full correspondence 

between predicted and measured global material 

behaviors was not achieved. In addition, William [16] 

proposed that the volume incompressibility principle was 

true at the onset of necking. Many tests with DIC 

technique, based on the incompressibility or the isotropy 

assumption, have conducted. However, little attention has 

been given to the validation of the second or the third 

method, especially for pipeline steels. Besides, few 

attempts have been conducted on points’ location effect 

on the second method. In this paper, we aim to test the 

feasibilities of the second and the third methods and 

assess the incompressibility and isotropy assumptions. 

Pipeline steels of API-5L X65 and X90 were tested and 

Poisson’s variation and points’ location effect were also 

studied. 

 

 

2. Methodology 

 

2.1 Materials and test specimens 

 

The materials investigated in this paper are grades 

API-5L X65 and X90 pipeline steels, which are widely 

used in the oil and gas industries. The tensile test 

specimens, as shown in Fig. 1, of API-5L X65 and X90 

are in the same dimensions. The specimen dimensions 

are designed according to ISO 6892-1-2009 [17] and 

GB/T 228-2002 [18]. The thickness and the width of the 

specimen are 8 mm and 20mm, respectively. Six plat 

specimens in the L-T direction (the L direction is the 

axial or longitudinal direction of the pipeline, and the T 

direction is the circumferential or transverse direction of 

the pipeline) are extracted; three of them are extracted 

from a pipe section of API-5L X65 and other three are 

extracted from a pipe section of API-5L X90. The 

y-direction in Fig. 1 is the longitudinal direction of the 

pipeline and the x-direction is the transverse direction. 

 

 

Fig. 1. The sketch of the specimen. y-direction is the 

longitudinal direction of  the pipeline and x-direction is  

       the transverse direction of the pipeline 

 

 

 

 

2.2 Experimental procedure 

 

Uniaxial tension tests were conducted in a MTS 810 

universal test machine at 20℃. Specimens were clamped 

using hydraulic grips mounted on a 250 kN tensile test 

rig and were loaded in a constant displacement rate mode 

(2mm/min). The length of the narrow portion of the 

specimen is 80mm, which results a nominal strain rate of 

4e-4 s
-1

. Specimens were loaded until fracture and the 

signal was logged using 793.10 multipurpose TestWare. 

Further post-processing of the crude data was carried out 

using in-house MATLAB [19] scripts. 

 

 

2.3 Digital Image correlation 

 

Full field deformation and strain measurements were 

performed using a digital image correlation system, 

Vic-3D, which was developed and implemented by 

Correlated Solutions Incorporated [20]. There are four 

CCD cameras, as shown in Fig. 2, simultaneously taking 

pictures of the deforming specimen under the control of an 

MTS control System, which ensures the synchronization 

of image capturing and loading. Two CCD cameras, which 

have a resolution of 2448×2048 pixels, were placed 

directly in front of the specimen to measure the 

deformation on the front surface; and the other two 

cameras, which have a resolution of 1360×1036 pixels, 

were placed on the right-hand side to measure the 

deformed profile of the specimen. Four CCD cameras 

were applied when the stress was calculated by method I 

(see section 2.5). Only two CCD cameras which were 

placed directly in front of specimens and were 

schematically shown in Fig. 3, were applied when the 

stress was calculated by the method II or III. A random 

black and white speckle pattern was applied to specimens 

prior to testing using matte spray paint. The pattern, as 

shown in Fig. 4, must be painted carefully and optimized 

to be more fined. One Picture was taken every half second. 

In addition, a set of pictures was taken of the un-deformed 

specimens. These pictures were considered as the 

reference case to determine displacements and strains for 

all of the subsequent pictures. x, y and z -directions are 

shown in Fig. 3 such that the x-direction is parallel to the 

horizontal direction and the y-direction is parallel to the 

vertical direction. The displacements are determined by 

correlation of the digital images with an specific software 

[21]. Basically, the pictures are subdivided in a subset of 

19×19 pixels, which is tracked in subsequent images. 
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Fig. 2. The Schematic Diagram of DIC Test System with 

Four CCDs. Two CCDs were placed directly in front of 

the specimen and the other two CCDs were placed at the  

            right-side of the specimen 

 

 

 

Fig. 3. The Schematic Diagram of DIC Test System with 

Two CCDs. x-direction is parallel to the horizontal 

direction and the y-direction is parallel  to the  vertical  

                    direction 

 

 

Fig. 4. Example of Speckle Pattern  

 

2.4 Strain calculation 

 

Strains obtained from the 3D-DIC system are average 

Green-Lagrange strains, which are calculated according to 

the correlated relation between the pictures of the 

deformed specimen and reference pictures of the 

un-deformed specimen. Usually used strains in 

engineering and research fields are more often the 

logarithmic strains. So the average Green-Lagrange strains 

need be converted into logarithmic strains according to Eq. 

(1) [11]. In which 𝜀𝑖𝑖 is the logarithmic strain and 𝐸̅𝑖𝑖 is 

the average Green-Lagrange strain in the same direction. 

The subscript of i could be x, y or z, which are the 

directions of the specimen shown in Fig. 3 (y is the 

longitudinal direction, x and z are transverse directions). 

 

1
ln(1 2 )
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2.5 Stress calculation 

 

Three methods, which are named as methods I, II and 

III, for determining the true stress of pipeline steels using 

the 3D-DIC technique are introduced. Method I, 

calculating the longitudinal macroscopic Cauchy stress 

based on the average normal displacements on the front 

and lateral faces of the specimen [11, 13], is shown as: 
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where 𝜎𝑦𝑦 is the true stress in the longitudinal direction, 

P is the current force, A is the current cross-sectional area 

at the necking section, W and W0 are the current and initial 

width of the specimen in the x-direction, B and B0 are the 

current and initial thickness of the specimen, Bx is the 

average displacement in the x-direction of points on the 

specimen’s lateral surface at the necking section and Wz is 

the average displacement in the z-direction of points on 

the specimen’s front surface at the necking section. Two 

cameras of 2448×2048 pixels were used to record Wz of 

the points on the front surface of the specimen while the 

other two CCD cameras of 1360×1036 pixels were used to 

record Bx of the points on the lateral surface of the 

specimen. Then, 𝑊0 − 2𝐵𝑥  and 𝐵0 − 2𝑊𝑧  were used to 

calculate the current lengths in the x and z -directions. 

According to the theory of the method I, incompressibility 

and isotropy assumptions were not needed when 

calculating the true stress. So method I was reliable.  

Method II is based on the longitudinal logarithmic 

strain. Under the incompressibility assumption, Eq. (3) is 

established. 
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Method III is based on the transverse logarithmic 

strain. The true stress calculated by the current force 

(given by the load cell) and the current cross-section area, 

is given by 
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where ε𝑥𝑥  and ε𝑦𝑦  are logarithmic strains in the 

x-direction and z-direction respectively. On the 

assumption of isotropy, ε𝑥𝑥  equals as ε𝑦𝑦  and the 

calculation formula of the true stress is as: 

2

0
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F

e
A

 
               (5) 

In method III, the current force, the initial 

cross-section area and the transverse strain are needed for 

the true stress calculation. 

 

2.6 Bridgman equation  

 

As we all know, the stress state changes from a 

uniaxial to a triaxial stress state at the onset of necking. 

So a geometry correction must be applied in order to get 

a full-range true stress-logarithmic strain curve. It must 

be noted that the geometry correction is simply applied to 

the stress, rather than the strain. The same correction 

procedure with Bridgman equation used for the round 

tensile specimen can be equivalently used for the 

correction of the true stress obtained from rectangular 

tensile specimen, which has been validated by Zhang et 

al. [6]. For the round tensile specimen, the following 

correction equation by Bridgman is well known [21]:  

2
1 1

2

cor R a

a R


 

 ( ) ln( )
    (6) 

where cor  is the corrected true stress,   is the true 

stress calculated with method I, II or III, a is the current 

radius of the neck and R is the radius of curvature of the 

neck surface in the longitudinal plane at the minimum 

section. The correction starts once the maximum load has 

passed. 

The neck geometry parameter, a/R, was determined 

by the empirical expression for the neck geometry 

parameter [22]: 

1 1
p

a

R
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. ( )           (7) 

where 
maxp  is plastic part of the logarithm strain at the 

maximum load,   is the logarithmic strain after the 

onset of necking. 

3. Results and discussion 

 

3.1 True stress calculation by methods I and II  

 

Fig. 5 displays true stress-logarithmic strain curves of 

API-5L X65 steel obtained by method I. Three curves are 

in a consistent trend. Fluctuations of the true stress exist in 

the endgame of the stretching process, which are mainly 

due to the deviation of the recorded displacements before 

the fracture of the specimen. The transition from elastic 

stage to elastoplastic stage is smooth in the partially 

enlarged view in Fig. 5, although it is a little rough in the 

overall view. The post-peak strain softening phenomenon 

observed in nominal stress–strain curve did not turn up in 

the true stress-logarithmic strain curves, which means that 

the true stress of the pipeline steel is continuously 

increasing with the strain increment. The strain softening, 

which is mainly caused by the cross-section area reduction 

in the necking process, is not representative of the material 

behavior. The stress correction caused by stress state 

change in the necking process will be analyzed in Section 

3.4.  
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Fig. 5. The true stress-logarithmic strain curves of 

specimens calculated through method I. The transition 

from elastic stage to elasto-plastic stage is very smooth 

in the partially enlarged view 

 

 

Fig. 6 represents the true stress-logarithmic strain 

curves of API-5L X65 calculated by method II. The true 

stress-logarithmic strain curves calculated by methods I 

and II are in high agreement in the entire strain scope. 

The bifurcation emerges when the strain is greater than 

15.8% for specimen 2# and 18.4% for specimen 3#. The 

deviation between the results of methods I and II is not 

very large for specimens 2# and 3#.  
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Fig. 6. True stress–strain curves obtained by methods I  

and II, (a) specimen 1# (b) specimen 2# (c) specimen 3#. 

 

 

As seen from Fig. 6(b) and (c), the stress at large 

strain levels calculated by method I is greater than that by 

method II. The cross-section area obtained by method I is 

based on the displacements of almost all the points in the 

cross-section area, while the cross-section area obtained 

by method II is based on the longitudinal strain of the 

middle point at the specimen front surface. So the 

calculation of the true stress by method I includes 

deformation effects of both the intermediate and marginal 

positions while the calculation of method II only includes 

the deformation effect of the middle position. From the 

profile of the specimen after fracture in Fig. 7, the 

deformation at marginal position is a little greater than 

that at intermediate position. So the area calculated by 

method I is smaller than that calculated by method II, 

which is main reason for the stress of method I greater 

than that of method II. 

 

 

Fig. 7. Strain contours and the fracture position  

of Specimen 4#  

 

 

The stress deviations at the ultimate strain are being 

analyzed on account of the deviations increasing with 

strain increase. The stress at ultimate strain calculated by 

method I was compared with that calculated by method II. 

The comparison results show that deviations at the 

maximum strain are 0.96%, 6.30% and 4.51% for 

specimen 1#, 2# and 3#. Although the calculation result 

of method II is a little conservative, the comparison 

shows that the deviation is not large between the results 

of methods I and II. The results of method I are reliable 

as the calculation procedure is without assumptions, so 

method II is also a reliable method for the calculation of 

true stress of pipeline steels. In addition, the calculation 

results of method II are smooth and stable and it is very 

convenient to calculate the true stresses of multiple 

points of one specimen. Method II provides a possibility 

to test a variety of material properties (such as weld, heat 

affected zone and base material) on one specimen [14]. 

 

 

3.2 True stress calculation by methods II and III 

 

These three specimens being tested are identified as 

specimens 4#, 5# and 6#. Six points (five points were 

align in the center line of the specimen and two points 

were aligned in a horizontal line at the fracture position) 

of specimen 4# were researched, which are sketched in 

Fig. 8. The distance between the points in the center line 

is 2mm, and 3mm for the points in the horizontal line.  

 

The position 

of fracture 
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Fig. 8. Positions of the points of specimen 4#. The 

distance between the points in the center line of the 

specimen  is 2 mm, and 3 mm  for  the points in  the  

                horizontal line 

 

The calculation results of points from 1 to 6 by 

method II are presented in Fig. 9. The stress-strain curves 

of points 1 and 6 are coincident, which means that there 

is small deviation when test the intrinsic material 

properties through the points in the line of fracture as 

shown in Fig. 7. Comparison of the results of points from 

1 to 5 show that the ultimate strain decreases for points 

from 1 to 5, and there is a falling section, which is 

different from the true stress-logarithmic strain curves of 

points 1 and 6. The strain contours of specimen 4# in the 

stretching process are shown in Fig. 10, in which 

stair-step strain contours always exist. The stair-step 

strain contours are consistent with the ultimate strains of 

points from 1 to 6. As seen from Fig. 10, the strains of 

some points, such as point 5, stop increasing from Fig. 10 

(d) to (h), that’s why there are bifurcations between the 

curves of point 1 and points from 2 to 5. In theory, that’s 

because there is strain localization at positions of points 

from 2 to 5 when necking occurs. In another aspect, the 

results of points from 1 to 6 are in good agreement in 

small strains, such as 0.1.So method II can get reasonable 

results from points in the fracture line and get relatively 

reasonable results from all points under the condition of 

small strains.  
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Fig. 9. Stress-strain curves of points from 1 to 6. The 

ultimate strain decreases for points from 1 to 5 and there  

  is a falling section in the curves of points from 2 to 5 

 

 

(a)            (b)        (c)  (d) 

 

    (e)           (f)        (g)     (h) 

Fig. 10. Contours of strain in different phases of 

stretching. The stair-step strain contours  are consistent  

     with the ultimate strain of points from 1 to 6 
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Fig. 11. Calculation results by methods II and III. (a)  

point 1; (b) point 2 

 

 

Fig. 11 displays the stress- strain curves of points 1 

and 2 by methods II and III. There are bifurcations for 
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both points. For point 1, there are three phases: these two 

curves coincide when the strain is less than 0.11; there is 

a small deviation when the strain is greater than 0.11 but 

less than 0.46; the deviation is increasing with the strain 

increase when the strain is greater than 0.46. There are 

also three phases for points 2. The nominal 

stress-logarithmic strain curves of points 1 and 2 are 

presented Fig. 12. The second phases of points 1 and 2 

both starts at the onset of necking. The necking happens 

when the nominal stress drops. This illustrates that 

method III can obtain the same result as method II before 

the onset of necking and get an extremely close result 

after the onset of necking within a certain range of strain, 

which is 0.46 for point 1 and 0.33 for point 2.  
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Fig. 12. Nominal stress-true strain curves and true 

stress-logarithmic strain curves of points 1 and 2. The 

second phases  of  points 1 and 2 are all starting at the  

           onset of specimen necking 

 

3.3 Correction of true stress-logarithmic strain  

   curves 

 

The most important part of true stress correction 

using Bridgman equation and Eq. (7) is to determine the 

logarithmic strain at the maximum load. The nominal 

stress-logarithmic strain curves of specimens 1#, 2# and 

3# are represented in Fig. 13, in which the logarithmic 

strain corresponding to the maximum nominal stress 

could be obtained. As the maximum load is consistent 

with the maximum nominal stress, the logarithmic strain 

at the maximum load can be obtained. And then the 

plastic part of logarithmic strain at the maximum load 

can be got by subtracting the elastic part. The plastic 

logarithmic strains at maximum load of specimens 1#, 2# 

and 3# are shown in Table 1, which are labeled as 
maxp . 

The corrected true stress-logarithmic strain curves of 

specimens 1#, 2# and 3# are displayed in Fig. 14. The 

corrected true stresses are little smaller than the directly 

calculated ones, and the corrected true stress-logarithmic 

strain curves are flatter than the uncorrected ones in the 

last section. The average value of the ultimate 

logarithmic strains and stresses of API-5L X65 are 0.706 

and 1366.2MPa, respectively.  

 

0.0 0.2 0.4 0.6 0.8

0

200

400

600

800

s
tr

e
s
s
 (

M
P

a
)

strain (mm/mm)

 1#-nominla stress

 2#-nominla stress

 3#-nominla stress

 
Fig. 13. Nominal stress-logarithmic strain curves of 

specimens 1#, 2# And 3#. The logarithmic strain at the 

maximum load can be obtained  at  the point  of  the  

             maximum nominal stress 

 

 

Table 1. Material properties of API-5L X65 and X90 

 

material Specimen 
maxp  εu σu/MPa 

API-5L 

X65 

1# 0.426  0.786 1436.4 

2# 0.403 0.691 1254.0 

3# 0.425 0.641 1408.3 

API-5L 

X90 

4# 0.095 0.956 1108.2 

5# 0.068 0.772 1117.2 

6# 0.084 0.976 1027.5 



True stress-logarithmic strain curves test of pipeline steels using 3D digital image correlation              1387 

 

 

0.0 0.2 0.4 0.6 0.8

0

300

600

900

1200

1500

1800(a)

s
tr

e
s
s
 (

M
P

a
)

strain (mm/mm)

 1#-method I

 1#-method II

 1#-method I-corrected

 1#-method II-corrected

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

200

400

600

800

1000

1200

1400

1600(b)

s
tr

e
s
s
 (

M
P

a
)

strain (mm/mm)

 2#-method I

 2#-method II

 2#-method I-corrected

 2#-method II-corrected

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

200

400

600

800

1000

1200

1400

1600

1800(c)

s
tr

e
s
s
 (

M
P

a
)

strain (mm/mm)

 3#-method I

 3#-method II

 3#-method I-corrected

 3#-method II-corrected

 

Fig. 14. Corrected true stress-logarithmic strain curves 

(a) specimen 1#; (b) specimen 2#; (c) specimen 3#. The 

corrected  true  stress  is  little less than the directly  

             calculated true stress 

 

The corrected true stress-logarithmic strain curve of 

specimen 4#, which material is API-5L X90, is shown in 

Fig. 15. There are three curves in Fig. 15, which are 

corrected true stress-logarithmic curve, uncorrected true 

stress-logarithmic curve and nominal stress-logarithmic 

strain curve. From the nominal stress-logarithmic strain 

curve, the plastic logarithmic strain at maximum load can 

be obtained, which value is 0.095. According to this 

procedure, the plastic logarithmic strains and uniform 

elongations of specimens 5# and 6# can be obtained, as 

shown in Table 1. The average value of uniform 

elongations of API-5L X90 is 0.082, which is much 

smaller than that of API-5L X65.  
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Fig. 15. Corrected true stress-logarithmic curve, 

uncorrected true  stress-logarithmic curve and nominal  

     stress-logarithmic strain curve of specimen 4# 

 

 

The corrected true stress-logarithmic strain curves of 

API-5L X90 are shown in Fig. 16. Because the 

logarithmic strain at the maximum load is small, the 

deviation between the uncorrected and corrected curves 

at the ultimate strain is relatively large. The ultimate 

logarithmic strains and stresses of the three specimens of 

material API-5L X90 are also included in Table 1. The 

average value of the ultimate logarithmic strains of 

API-5L X90 is 0.901 and the average value of the 

ultimate true stresses is 1084.3MPa. 
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Fig. 16. Corrected true stress-logarithmic strain curves 

of specimens 5# and 6#. Owing to the smaller 

logarithmic strain at the onset of necking, the deviation 

between  the uncorrected  and corrected curves at the  

         ultimate strain is relatively large 
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4. Conclusion 

 

Three methods of calculating the true stress are 

investigated and compared in the process of testing the 

material properties of pipeline steels with DIC technique. 

Materials API-5L X65 and X90 are tested. The true 

stress-logarithmic strain curves are calculated; moreover 

the correcting process with Bridgman equation is applied. 

The main conclusions of this study are: 

 Method II, which is under the consumption of 

incompressibility, can also get reasonable results 

validated by method I. Method II can obtain smooth 

and stable curves and is convenient to calculate the 

true stress-logarithmic strain curves of multiple 

points on one specimen. 

 The transverse logarithmic strains were heavily 

affected by the stress state change from a uniaxial to 

a complex triaxial stress states.  

 The pipeline steel of API-5L X90 has a higher yield 

stress but a lower ultimate stress than that of API-5L 

X65. The average uniform elongation of API-5L 

X65 is greater than that of API-5L X90, but the 

ultimate logarithmic strain of API-5L X65 is less 

than that of API-5L X90. The pipeline of API-5L 

X90 can bear a higher inner pressure with the higher 

yield stress but has a poor ability to withstand the 

displacement load. 

 

 

Acknowledgment 

 

The authors gratefully acknowledge the sponsorship 

of this work by Specialized Research Fund for the 

Doctoral Program of Higher Education of China (Grant 

No. 20100007110006).  

 

References 

 

 [1] ASTM E8M (2004) Standard Test Methods for  

    Tension Testing of Metallic Materials, ASTM, USA. 

 [2] Z. L. Zhang, M. Hauge, C. Thaulow, J. Ødegard,  

    Eng. Mech. Fract 69, 353 (2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 [3] E. Berg, E. Østby, C. Thaulow, B. Skallerud, Eng.  

    Mech. Fract 75, 2352 (2008). 

 [4] E. Østby, C. Thaulow, B. Nyhusa, Int J Pressure  

    Vessels Piping 84, 337 (2007). 

 [5] X. Li, Y. Fan, X. Xin, Mater. Mech. Eng 29, 45  

    (2005). 

 [6] Z. L. Zhang, M. Hauge, J. Odegard, C. Thaulow, Int.  

    J Solids Struct 36, 3497 (1999). 

 [7] M. Jerabek, Z. Major, R. W. Lang, Polym Test 29,  

    407(2010). 

 [8] E. M. Parsons, M. C. Boyce, D. M. Parks, M.  

    Weinberg, Polym. 46, 2257(2005). 

 [9] E. Parsons, M. C. Boyce, D. M. Parks, Polym. 45,  

    2665 (2004). 

[10] J. Kalus, J. K. Jørgensen, Polym.Test 36, 44 (2014). 

[11] F. Grytten, H. Daiyan, M. Polanco-Loria, S.  

    Dumoulin, Polym. Test 28, 653 (2009). 

[12] K. J. Han, J. Shuai, X. M. Deng, L. Z. Kong, X.  

    Zhao, M. Sutton, Eng. Mech. Fract 124, 167 (2014). 

[13] C. Leitão, I. Galvão, R. M. Leal, D. M. Rodrigues,  

    Mater. Des. 33, 69 (2012). 

[14] W. D. Lockwood, B. Tomaz, A. P. Reynolds, Mater  

    Sci Eng A 323, 348 (2002).  

[15] W. D. Lockwood, A. P. Reynolds, Mater Sci Eng A  

    339, 35–42.  

[16] D. C. William, Fundamentals of Materials Science  

    and Engineering. Fifth Edition (2001). 

[17] ISO 6892-1-2009 (2009) Metallic materials -Tensile  

    testing - Part 1: Method of test at room temperature,  

    ISO, Switzerland. 

[18] GB/T 228-2002 (2002) Metallic Materials - Tensile  

    Testing at Ambient Temperature, State Quality  

    Supervision and Inspection & Quarantine Bureau of  

    P.R.C, China. 

[19] <www.mathworks.com>. 

[20] <www.correlatedsolutions.com>. 

[21] Bridgman PW (1952) Studies in Large Plastic Flow  

    and Fracture. McGraw-Hill, New York. 

[22] G. Le Roy, J. D. Embury, G. Edwards, M. F. Ashby,  

    Acta Metall 29, 1509 (1981). 

 

 

 

___________________ 
*Corresponding author: nature_pma@163.com 


